AlphaZero

AlphaZero ist ein autodidaktisches Computerprogramm von DeepMind, dessen Algorithmus mehrere komplexe Brettspiele einzig anhand der Spielregeln und Siegbedingungen sowie durch intensives Spielen gegen sich selbst erlernt.[1] Das Programm verwendet einen verallgemeinerten Ansatz von AlphaGo Zero und beherrscht nach entsprechendem Training nicht nur Go, sondern auch die Strategiespiele Schach und Shōgi.

Am 5. Dezember 2017 veröffentlichte DeepMind, eine Forschungseinrichtung für Künstliche Intelligenz[2] und Tochterunternehmen von Alphabet Inc., ein Preprint auf ArXiv über das Programm AlphaZero, in dem beschrieben wird, dass AlphaZero innerhalb von 24 Stunden durch bestärkendes Lernen eine überragende Spielstärke erreichte und die leistungsstärksten Programme Stockfish, Elmo und eine Drei-Tages-Version von AlphaGo Zero in ihren jeweiligen Disziplinen besiegte, dabei jedoch leistungsfähigere Hardware als die Gegnerprogramme verwendete.[3] Mit dem Dokument wurden lediglich zehn Gewinnpartien von AlphaZero gegen Stockfish veröffentlicht. Alle weiteren Partien sowie auch AlphaZero selbst waren zunächst nicht zugänglich und die Ergebnisse des Dokuments nicht durch ein Peer-Review verifiziert. Eine erweiterte und begutachtete Version des Artikels erschien am 7. Dezember 2018 in der Zeitschrift Science.[4]

AlphaZero schlug das freie Schachprogramm Stockfish 8 nach neun Stunden Selbstlernen. Für das Anlernen des künstlichen neuronalen Netzwerks wurden 64 Tensor Processing Units (TPU) der zweiten Generation verwendet. Weitere 5.000 TPUs der ersten Generation wurden für das Erzeugen der dazu notwendigen Trainingspartien eingesetzt.[5] Der Algorithmus mit dem trainierten neuronalen Netzwerk spielte dann auf einem einzigen Computer mit lediglich vier TPUs.[6]

  1. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen spektrum_2017-12-06.
  2. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen faz_2017-12-10.
  3. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen preprint.
  4. David Silver, Thomas Hubert1, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis Hassabis: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. In: Science. Vol. 362, Issue 6419, S. 1140–1144 doi:10.1126/science.aar6404
  5. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen rankred_2017-12-08.
  6. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen verve_2017-12-06.

Developed by StudentB